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Abstract-Multichannel parallel-flow heat exchangers which are modelled assuming that the overall heat 
transfer coefficients and fluxes of heat capacities are independent of the temperature are termed ‘linear- 
type exchangers’. The mean driving force defined for such exchangers has, in matrix notation, a form 
analogous to that for two-channel exchangers. It may be shown that for constant values of the coefficients 

it becomes an analogue of the logarithmic mean temperature difference. 

1. INTRODUCTION 

THE EQUATIONS presented are based, in principle, on 
a mathematical model discussed in refs. [1, 21. Using 
a formal nomenclature, the model may be called a 
‘linear model with constant coefficients’. The words 
‘in principle’ have been used to stress the fact that the 
first part of the analysis will also concern linear models 
with variable coefficients. 

Thus, the assumptions corresponding to the par- 
allel-flow heat exchanger analysed (Fig. 1) are as 
follows : 

(1) The process is steady-state. 
(2) Each fluid is ideally mixed in the direction per- 

pendicular to the flow. 
(3) The velocity profile is flat ; the heat conductivity 

in the direction of the flow is negligible; the heat is 
transferred only in the direction normal to the axis of 
a channel. 

(4) The channels are of equal length. 
(5) The cross-section of each channel and, conse- 

quently, that of the exchanger is constant over the 
whole length 1. 

(6) Heat transfer coefficients, fluxes of heat capaci- 
ties and thermal properties of the media are constant 
within each channel. 

The differential balance of the heat exchanged 

0 x I 

FIG. 1. Schematic representation of a multichannel parallel- 
flow heat exchanger. The channels in cross-sections x = 0 

and 1 may be interconnected in any possible way. 

between a medium flowing in a pth channel and all 
other media is 

-dQP = - W,dt, = i kPj&,-fi)dfj 
I= I 
IZP 

p= 1,2 ,...,n. 

It should be noted that : 

(1) 

l the form of the linear model with variable 
coefficients is formally identical with (1) ; 

l the heat transferred from a medium to its neigh- 
bours is taken as negative. 

Introducing the dimensionless variable z = x/l we 
may write equation (1) as follows : 

-dQP = - W,dt, = $ k,, g (tp- tj) dz. 
( > j= I 

JfP 
(2) 

It should be pointed out that the heat capacity flux, 
W,, is positive when a medium flows in the direction 
of the Oz-axis, and negative (W, < 0) with the flow 
in the opposite direction. 

For comparison, the equations valid for the two- 
channel exchanger will be employed. Then, the 
notation may be simplified to : 

Q, = Q;k,z = kz, = k;_fiz =.fi, =f (3) 

kf kf 
-z=,;-== 

W, W2 
2;s = t2--t, (4) 

(obviously Q, k, f, W,, W, and 6 may be functions 
ofz) 

dQ = -k$dz. (5) 

The total amount of heat exchanged is 
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NOMENCLATURE 

A square matrix of the basic mathematical T, fundamental matrix for equation (33) 
model, W- ‘U = [a,,]; t temperature vector, (t,, t,, , t,) 

4, element of the matrix A, t, temperature of medium i 
k,F,,l W = u:,l W, t m,nr t,,, lowest and highest temperatures in 

P, vectors of the heat transfer areas, the exchanger 

(F’,,...,F,,) 4, ulr = k,F, = k,,F,,,_i # i 
s vectors of the heat transfer areas, 

(f,,>...>f;,,) 
4, 

Fpj, .fi, area of heat transfer between the pth 

- ,i, % 

/i 1 

Q 
QP 

5 sp 

and jth media (channel), j = 1,2, , n ; W diagonal matrix of the heat capacity 

.i#p fluxes, [W,]; 
unit matrix of order m 

I canonical Jordan forms of matrices 
A and P, respectively 
diagonal matrix of the overall heat 
transfer coefficients, [k,,];z; , j # p 
overall heat transfer coefficients between 
the pth andjth channel lengths of the 

exchanger 
elementary matrix given by equation 
(A5) (see the Appendix) 
square matrix given by equation (A9) 
(see the Appendix) 

‘thermal’ vector, (Q I) Q2,. , Q.) 
amount of heat exchanged between the 
pth medium and the remaining media 

matrices leading to the canonical Jordan 
form 

Wi flux of the heat capacity of medium i 

X linear coordinate 
z dimensionless coordinate, x/l. 

Greek symbols 

4 vector of the temperature differences 

(4X> . 16,“) 
6 PI element of the vector S,,, t,, - c, ; 

j= 1,2 ,...,n;j#p 
e vector of dimensionless temperatures 

(t4,82,...,e,) 

0, element of the vector 0, dimensionless 
temperature of medium i, 

(ti- L)/(4n,X-- L,“) 
4 eigenvalues of A or P. 

(6) 

For a linear-type exchanger with constant coefficients 

a,,a*,k = const.; f = Fz (7) 

and, consequently, 

Q = -kF 
s 

‘6dz = -kF6,. 
0 

(8) 

Of course 

s 

m 

= yy)-w4 6 

xi-- = I” fora, +a, # 0 (9) 

‘“sioi 
6, = 6(l) = 6(O) = 6 = const. fora, +a* = 0. (10) 

In this case the use of the logarithmic mean is not 
possible, as expression (9) becomes indeterminate. We 
may, however, employ the above concept by writing, 
for example 

s(O) = 6;6(1) = &r)(& > O,E # 1) 

and then calculating 

(11) 

6,(E) = v 
6, = lip,(&). 

Naturally, the limit of this expression is 6. 

(12) 

(13) 

2. OVERALL HEAT BALANCE FOR 

MULTICHANNEL EXCHANGERS 

On introducing : 

l the vector of the heat transfer area 

fp = (f,.,,...,f,,,-,,f,.,+,,...,f~.~); (14) 

l the vector of the temperature difference 

6, = (6,,, ,6,,-I> &,p+ I>‘. . 7 &.J (15) 

where 6,. j = tP - t, ; j = 1,2, , n, j # p ; 

l the diagonal matrix of the overall heat transfer 
coefficients 

K,, = {k,,,...,k,,,-,,k,,~+,,...,k,,,} (16) 

equation (1) may be written as 
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that is 

dQ, = -(K,df,)TG, (17) 

dQ, = - Kpz TV&. 
( ) 

(18) 

The analogy between (18) and (5) is readily seen. 
A formula describing the total amount of heat ex- 

changed by the medium p is an analogue of equa- 
tion (6) 

dQ,= - 

For a linear model with constant coefficients 

fp,, = F,,,z; f, = Fpz 

F,, j = const., j = 1,2, . . , n, j # p 

F, = VP,,,. ,f”,p-,,&,+I,. ..,F,,,) 

is a vector with constant coefficients. 
AS 

kp,j = const., j = 1,2,. . . , n, j # p 

K, is a matrix with constant coefficients, and 

Qp = -(K,F,)’ ‘S,dz 

which, assuming 

s 

L 

6, dz = C4Jm 
0 

may be expressed as 

Qp = -(K,FJT@Jm. 

(1% 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

It may be seen that equations (23)-(25) are obtained 
by substituting the vector or matrix symbols for 
scalars in equation (8). 

In the case analysed a simpler and more convenient 
method may be proposed for calculating the amount 
of heat exchanged between a given medium and all 
other media, employing directly the mathematical 
model of multichannel parallel-flow exchangers. If 

Q = (Q,,Q,,...,Q,,...,Q,> (26) 

is a vector with components Q,, p = 1,2,. . . , n ; 

t = (t,,t, 2 . . ’ 2 $2 ., cl) (27) 

is a vector of the temperatures of the media, and 

u = [uij]; (28) 
is a square matrix of dimension n, where 

uij = k,F, for i fj 

(2% 

then 

Q=U ‘tdz 
s 0 

(30) 

Q,=u,. ‘tdz 
i 0 

(31) 

where up. is the pth row of the matrix U. If the tem- 
perature profiles are known, the calculation of Q, 
is straightforward. Equations (30) and (31) do not 
contain, however, the explicit forms of the driving 
forces equal to the temperature differences ; from that 
point of view equations (17)-(19) and (23)-(25) are 
more interesting. 

3. ANALOGUE OF A LOGARITHMIC MEAN 

DRIVING FORCE FOR MULTICHANNEL 

EXCHANGERS 

In order to determine (S,),, equation (24), S, has 
to be calculated as a function of z. A mathematical 
model with constant coefficients is a system of n ordi- 
nary differential equations, which should be solved 
for the functions of z defining the temperatures of the 
individual media : 

!!f = At. 
dz (32) 

Appropriate transformations (see the Appendix) 
lead to a system of n - 1 ordinary linear differential 
equations with constant coefficients, where the 
unknown functions correspond to the temperature 
differences between the pth medium and all other 
media : 

dS 
p= PC& 
dz 

The set 

1,,1,,...,L,,L (34) 

is a spectrum of the matrix A. The eigenvalues Ai, 
i= 1,2,..., n - 1, n were arranged in (34) in such a 
way that for : 

(4 i w, z 0 
I== I 

1,,&,..., an-, zo;a,=o; (35) 

(b) i Wi = 0 
,= 1 

IZ,,L..., an_2 # o;a,_, = a, = 0. (36) 

Then, as is shown in the Appendix, the spectrum of 
the matrix P may be expressed as an ordered set 

~,,L...,LI. (37) 

Employing theorems of linear algebra it may be 
proved that there exists a non-singular square matrix 
T, which satisfies equation (33). This matrix is called a 
fundamental (integral) matrix of equation (33). Thus 
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dT, = PT 

dz P’ 

It is usually assumed that the fundamental matrix 
is given by 

T, = epZ. (39) 

Then 

Tp(z = 0) = I = T,,, 

T,(z = 1) = ep = T,, (40) 

P = lnT,, = In (T,,,TiO’). (41) 

Each vector solution of (33) may be written as 

8, = T,c, (42) 

where c,, is a vector with any constant elements. If for 
z = 0 S,(z = 0) = &,, then 

cp = &I 

S,, = T,i$,. (43) 

According to (24) we have 

c4A?! = 

By virtue of (35) and (37), det P # 0 : 

S’ T,, dz = Pm ’ [eP -I] 
0 

= Un(~,,,~~‘)I-‘(T,,l -T,J = (T,h,. (4) 

The above expression may be termed a ‘matrix log- 
arithmic mean’. Hence 

C&L, = [ln(T,,T,%‘)l- ‘(T,, -T,& 

= V&c, = ~(T,~T~‘)I-‘@,I -~poI (45) 

where S,, = s, (z = I). 
A full analogy between (45) and (9) may be seen. 

(b) i W, = 0 
i= I 

In this case (S,),,, cannot be expressed directly in 
terms of the matrix logarithmic mean, as from (36) 
and (37) it follows that the matrix P = In (T,, TiO’) is 
singular. However, to obtain a formula corresponding 
to equation (45) we may write 

A,_, =lii2&=0 (46) 

(&ML = [ln (T,, Wji’)l- ‘CT,, (4 -T,& 

= (T&)hncp = IIn CT,, W&‘)I- ’ VP1 (4 -$J (47) 

Cd,), = lim (8&)), e-0 (48) 

4. SUMMARY 

The heat balance was based on a mathematical 
model of multichannel parallel-flow heat exchangers. 
For practical calculations it is convenient to employ 
this model without any modifications. 

In order to formulate a vector analogue of the log- 
arithmic mean driving force it is necessary to trans- 

form the model into a form containing the tem- 
perature differences between an individual medium 
and all other media. 

The assumption of the model with constant 

coefficients leads to a generalization of the concept 
of the logarithmic mean driving force. The final ex- 
pression makes use of a formula defining the matrix 
logarithmic mean, and the equations obtained fully 
correspond to those valid for two-channel exchangers. 
However, while in the latter case the logarithmic mean 
temperature difference may actually be employed in 

computations, it remains basically an interesting 
theoretical generalization of the concept for the case 
of multichannel exchangers. 
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APPENDIX 

In refs. [I, 21 the differential model of multichannel par- 
allel-flow heat exchangers was given as 

d0 
dz = A0 

where 

@, = ;q- 
nldX nU” 

(C” and t,,, are the temperatures of a cold and hot medium, 
respectively, at the inlet to the exchanger). 

The matrix A is given by 

A = [a,,]; = W- ‘U 

where W is a diagonal matrix 

W={W,,Wz,...,W,) 

u = [%I;~ 

Obviously, if equation (Al) is satisfied by the vector 0, it 
is also satisfied by 

t=(t,,t,,...,I,) (A2) 

that is 

dt = At 
dz 

The elements of the vector t are the temperatures of the 
media flowing within the channels of the exchanger. We 
would like, however, to find an equation satisfied by the 
following vector : 

6, = @,,,...,6,,“) (A4) 
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Hence 
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where 

S,, = tp-t,, j= 1,2 ,..., n; j#p. (A44 

Let M, be an elementary matrix, which upon a pre- 
multiplication of any matrix (vector) moves itspth row into 
the position of the last row, and then adds it to the remaining 
rows taken with the opposite signs. It is convenient to write 
this matrix in block form : 

2 = P6, 6412) 

(the second of the above equations is identical with the pth 
equation of (A3)). 

Let J be a canonical Jordan form of A, while S is a matrix 
which transforms A into this form. Then 

MpAM;’ = M,SJS-‘M;’ = (M,,S)J(M,S)-‘. (A13) 1 

-I,_, i 0 

I & 1 

0 ; -I,_, 

1 

o...o 1 o...o 

It may be shown that 

M,S = 

0 

s, ! ! 0 

WP I 

M, = WI 
(A14) 

1 r 101 
(Al51 

1 

-I,-, 0 f 

1 4, o...o o...o I 

I 

0 -I,_, f 

1 

where S, is an easy to calculate, non-singular square matrix, 
while wp and vp are the row matrices whose elements are 
immaterial for further analysis. 

On performing the operations indicated by equation 
(A13), employing (A14) and (A15) and comparing with 
(AlO) we obtain 

P = S,J,_,S,-’ (Al@ 

where J,_ , is a diagonal matrix and also a canonical Jordan 
form of P 

Jo-, = {&,L...,L,}. (A17) 

Consequently, the solution of equation (A12) is straight- 
forward. 

M;’ = 

Then 

(‘46) 

(A7) 

Both sides of equation (A3) should be subjected to elemen- 
tary transformations using M, : 

‘T = (M,AM;‘)(M,t). (‘48) 

Let 

(A9) P= 

(the matrix P is of order n - l), then the matrix MpAM; ’ may be expressed in block form as 

M,AM;’ = 
; p I!] 

t -up.1, -ap,z>. . ., -up,_,, -ups+j,. .., -ups (o J 
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FORCE MOTRICE MOYENNE DANS DES ECHANGEURS DE CHALEUR A 
ECOULEMENTS PARALLELES MULTICANAUX 

R&sum&On appelle tchangeurs de type linkaire, des ichangeurs multicanaux g tcoulements parall~les qui 
sont mod&&s en supposant que les coefficients globaux de transfert thermique et les flux de capacitCs 
thermiques sont indkpendants de la temptrature. La force motrice moyenne dgfinie pour ces kchangeurs 
a, en notation matricielle, une forme analogue $ celle pour les kchangeurs B deux canaux. On montre 
que pour des valeurs constantes des coefficients elle est I’analogue de la moyenne logarithmique des 

temptratures. 

MITTLERE TREIBENDE KRAFT IN MEHRKANAL-WARMEUBERTRAGERN MIT 
PARALLELER STROMUNG 

Zusammenfassung-Mehrkanal-Wlrmeiibertrager mit paralleler Stromung werden als “Wlrmeiibertrager 
von linearem Typ” bezeichnet, wenn bei ihrer Modellierung angenommen wird, daD die Gesa&- 
wBrmedurchgangs-Koeffizienten und die Wgrmekapazitltsstriime temperaturunabhlngin sind. Die mittlere _ - -- 
treibende Kraft, die man fiir solche WPrmeiibertrager definiert, hat in Matrixschreibweise eine Form, die 
derjenigen fiir Zweikanal-Ubertrager analog ist. Es kann gezeigt werden, da13 fiir konstante Werte der 

Koeffizienten eine Entsprechung der mittleren logarithmischen Temperaturdifferenz entsteht. 

CPEAHEE 3HA’JEHklE flBkwcvI@R CWIbI B MHOrOKAHAJIbHbIX I-IPIIMOTOYHbIX 
TEIVIOOEMEHHWKAX 

aaqnn-MHororaHaRbHbIe npsMoToqHble ‘rennoo6MetnimcH B npewlonortemui, ~TO KO~+$H- 

wieHTM cyhwapHor0 TeMonepemCa ~4 Ternowe noToKa He 3awicnT 0T TeMnepaTypbl, waccH@iwi- 

pyIOTCK KKK Tennoo6raemnmi JIEHeiiHOrO THIIB. MaTpHYHaK 3al'DiCb CpeJlHerO 3Ha'ieHHR ,LUlHlKyIUei-i 

cww paccMaTpAsae=x TeMOO6MeHIiEKOB cxoma no @oprde co cnyliae~ neyxKaaanbHblx T~MOOB- 

MeHHMOB.~OKK3aHO,~TO npHnOCTOKHH.bEXKO3@$&iUHeHTaX3TO3HSleHXieCTaHOBHTCCRKHWlOI'OMJlOl% 

p~f$w~iecKoiicpe~eiipa3H0cr~ TeMnepaTyp. 


