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Abstract—Multichannel parallel-flow heat exchangers which are modelled assuming that the overall heat

transfer coefficients and fluxes of heat capacities are independent of the temperature are termed ‘linear-

type exchangers’. The mean driving force defined for such exchangers has, in matrix notation, a form

analogous to that for two-channel exchangers. It may be shown that for constant values of the coefficients
it becomes an analogue of the logarithmic mean temperature difference.

1. INTRODUCTION

THE EQUATIONS presented are based, in principle, on
a mathematical model discussed in refs. [1, 2]. Using
a formal nomenclature, the model may be called a
‘linear model with constant coefficients’. The words
‘in principle’ have been used to stress the fact that the
first part of the analysis will also concern linear models
with variable coefficients.

Thus, the assumptions corresponding to the par-
allel-flow heat exchanger analysed (Fig. 1) are as
follows :

(1) The process is steady-state.

(2) Each fluid is ideally mixed in the direction per-
pendicular to the flow.

(3) The velocity profile is flat ; the heat conductivity
in the direction of the flow is negligible; the heat is
transferred only in the direction normal to the axis of
a channel.

(4) The channels are of equal length.

(5) The cross-section of each channel and, conse-
quently, that of the exchanger is constant over the
whole length /.

(6) Heat transfer coefficients, fluxes of heat capaci-
ties and thermal properties of the media are constant
within each channel.

The differential balance of the heat exchanged

[} x !

FIG. 1. Schematic representation of a multichannel paratlel-
flow heat exchanger. The channels in cross-sections x = 0
and 1 may be interconnected in any possible way.
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between a medium flowing in a pth channel and all
other media is

_de =-W, dtp = Z kpj(tp_ti) dfpj
1%
p=12....,n )
It should be noted that:

e the form of the linear model with variable
coeflicients is formally identical with (1) ;

o the heat transferred from a medium to its neigh-
bours is taken as negative.

Introducing the dimensionless variable z = x/I we
may write equation (1) as follows:

—dQ, = —W,dt, = Z ky, (%) (t,—t;) dz ')

J#EP

It should be pointed out that the heat capacity flux,
W, is positive when a medium flows in the direction
of the Oz-axis, and negative (W, < 0) with the flow
in the opposite direction.

For comparison, the equations valid for the two-
channel exchanger will be employed. Then, the
notation may be simplified to:

O\ =Qk=ky=k;fio=fu=f (3
kf kf

_W_,=a‘;W2=aZ;6=t2—t' )

(obviously Q, k, f, W,, W, and § may be functions
of z)

df
dQ = —ky ddz. (5)

The total amount of heat exchanged is
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NOMENCLATURE j
A square matrix of the basic mathematical T, fundamental matrix for equation (33)
model, W~ 'U = [g, ] t temperature vector, (¢,, t5,...,1,)
a, clement of the matrix A, t, temperature of medium i
k,E W, =u,W, tmmns tmax  lOWeSt and highest temperatures in
F, vectors of the heat transfer areas, the exchanger
Fpry ooy Fon) u;, u, =k F; =k, F;j#i
f, vectors of the heat transfer areas, "
Uptoeos f) o= L
F,, f, area of heat transfer between the pth 141
and jth media (channel), j = 1,2,....n; w diagonal matrix of the heat capacity
J#p fluxes, [W ]
L, unit matrix of order m W,  flux of the heat capacity of medium {
J, J,_, canonical Jordan forms of matrices X linear coordinate
A and P, respectively z dimensionless coordinate, x//.
K, diagonal matrix of the overall heat
transfer coefficients, [k, /=", j # p
k,, overall heat transfer coefficients between
the pth and jth channel lengths of the Greek symbols
exchanger d, vector of the temperature differences
M, clementary matrix given by equation Bpis -+ 0p)
(AS5) (see the Appendix) S, element of the vector 8, 1,—1,;

P square matrix given by equation (A9)
(see the Appendix)

Q ‘thermal’ vector, (Q1, Q,,...,0,)

0, amount of heat exchanged between the
pth medium and the remaining media

S, S, matrices leading to the canonical Jordan

J=12,...n;j#p

0 vector of dimensionless temperatures
(91392, e ,0,,)
g, element of the vector 8, dimensionless

temperature of medium 4,
(ti_ tmin)/(tmax - tmln)

form A, eigenvalues of A or P.
bodf (e—1o
- _ hed = 12
Q= ﬁ kdzédz. (6) 0(8) Ine (12)
For a linear-type exchanger with constant coefficients 0 = 11_1}} 0,(8)- (13)
a,,ak=const.; f=Fz (7)  Naturally, the limit of this expression is .
and, consequently,
1 2. OVERALL HEAT BALANCE FOR
Q= —kFJ 0dz = —kF$,,. ®) MULTICHANNEL EXCHANGERS
0
On introducing :
Of course
5(1)—50) o the vector of the heat transfer area
5m=~—~—1 5(1)~——=5.n fora,+a, #0 (9 £ = fotsee o Sopts fopstoeeon fon)s  (14)
NS
0(0) e the vector of the temperature difference
S, = 06(1) =6(0) =6 =const. fora,+a, =0. (10) 0, = (BprsesGpp156ppitseesOpn) (15)

In this case the use of the logarithmic mean is not
possible, as expression (9) becomes indeterminate. We
may, however, employ the above concept by writing,

for example
0(0) =06;6(1) =ed{e>0,e £ 1) 0]

and then calculating

where d, ;= t,—t,; j=1,2,....n, j#p;

e the diagonal matrix of the overall heat transfer
coeflicients

K, =1k, \,....kppotskpprrr- o kpnt

equation (1) may be written as

(16)
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dg, = ~ (K, df,)"s, a7

that is

df, \f
dg, = — KPE 8,dz. (18)
The analogy between (18) and (5) is readily seen.
A formula describing the total amount of heat ex-
changed by the medium p is an analogue of equa-

tion (6)
! df,
dg, = — j; (KP d—;) 8,dz. 19
For a linear model with constant coefficients
Jos = Fy,zif, =F,z
F,;=const.,j=12,...,n,j#p (20)
Fp=(Fp,l"'-’Fp,p—th,p+I9'”sF'p,n) (21)
is a vector with constant coefficients.
As
k,,=const,j=12,...,n,j#p (22)
K, is a matrix with constant coefficients, and
1
g, = —(l(‘,,F,,)TJ0 é,dz (23)
which, assuming
1
J 8,dz =(3,). (24)
0
may be expressed as
Qp = —(Kpr)T(ap)m' (25)

It may be seen that equations (23)—(25) are obtained
by substituting the vector or matrix symbols for
scalars in equation (8).

In the case analysed a simpler and more convenient
method may be proposed for calculating the amount
of heat exchanged between a given medium and all
other media, employing directly the mathematical
model of multichannel parallel-flow exchangers. If

Q=(01.02--:0p---. Q) (26)
is a vector with components Q,, p = 1,2,...,n;
t=(t,t. sl s ty) 27
is a vector of the temperatures of the media, and
U= [u]i (28)
is a square matrix of dimension #, where
u; = kyF; fori#j
Uy = — i kyFy 29)
e

then

Q= Ujltdz (30)

1
0, = u,,.f tdz 3D
0
where u,. is the pth row of the matrix U. If the tem-
perature profiles are known, the calculation of Q,
is straightforward. Equations (30) and (31) do not
contain, however, the explicit forms of the driving
forces equal to the temperature differences ; from that
point of view equations (17)—(19) and (23)-(25) are
more interesting.

3. ANALOGUE OF A LOGARITHMIC MEAN
DRIVING FORCE FOR MULTICHANNEL
EXCHANGERS

In order to determine (4,),,, equation (24), 8, has
to be calculated as a function of z. A mathematical
model with constant coefficients is a system of n ordi-
nary differential equations, which should be solved
for the functions of z defining the temperatures of the
individual media :

dt
&= At. (32)

Appropriate transformations (see the Appendix)
lead to a system of n—1 ordinary linear differential
equations with constant coefficients, where the
unknown functions correspond to the temperature
differences between the pth medium and all other
media:

dé,
PP Ps,. (33)
The set
Aoy Ane 15 34)

is a spectrum of the matrix A. The eigenvalues 4,
i=1,2,...,n—1, n were arranged in (34) in such a
way that for:

() _il W, #0
ApsAagevishn1 #0;4,=0; (39

® 3 =0
AlsAayeeisdy_2#0;4,_,=4,=0. (36)

Then, as is shown in the Appendix, the spectrum of
the matrix P may be expressed as an ordered set

11912"“’}%—1' (37)

Employing theorems of linear algebra it may be
proved that there exists a non-singular square matrix
T, which satisfies equation (33). This matrix is called a
fundamental (integral) matrix of equation (33). Thus
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dT
i =PT,.

(38)

It is usually assumed that the fundamental matrix
is given by

T,= e, (39)
Then
T,(z=0)=1=T,
T,(z=1)= e = T, (40)
P=InT, =In (Tp.T,,'O‘). (41)

Each vector solution of (33) may be written as
5, =T, 42)

where ¢, is a vector with any constant elements. If for
z=0246,(z =0) = d,9, then

¢, =,
8, =T,0,. (43)
According to (24) we have
1
0,)n = (f T, dz) c,.
0
@@ Y W, #0
i=1
By virtue of (35) and (37),det P # 0:
1
J T,dz=P '[e* 1]
0
=[In (T, T, (T, —Tpo) = (T,)rn.  (44)

The above expression may be termed a ‘matrix log-
arithmic mean’. Hence

(6p)m = [ln (Tp]Tva])]‘ 1(’I‘p] _TPO)Cp
= (Tp)lncp = [ln (TplT;Ol)]_‘ I(épl _6p0)

where 8,, =8, (z = 1).
A full analogy between (45) and (9) may be seen.

(45)

(b) iW,=0

i=1
In this case (d,), cannot be expressed directly in
terms of the matrix logarithmic mean, as from (36)
and (37) it follows that the matrix P = In (T, T,,") is
singular. However, to obtain a formula corresponding
to equation (45) we may write

Ay = 1%3 =0 (46)

(8,(e))m = [In (T, ()T )]~ (T,1(e) = T,o)e,
= (T,(e)c, = I (T, (e)T)] (8,1 (e) —9,0) (47)
(9p)m = Lim (5, (€))m (48)

4. SUMMARY

The heat balance was based on a mathematical
model of multichannel parallel-flow heat exchangers.
For practical calculations it is convenient to employ
this model without any modifications.

In order to formulate a vector analogue of the log-
arithmic mean driving force it is necessary to trans-
form the model into a form containing the tem-
perature differences between an individual medium
and all other media.

The assumption of the model with constant
coefficients leads to a generalization of the concept
of the logarithmic mean driving force. The final ex-
pression makes use of a formula defining the matrix
logarithmic mean, and the equations obtained fully
correspond to those valid for two-channel exchangers.
However, while in the latter case the logarithmic mean
temperature difference may actually be employed in
computations, it remains basically an interesting
theoretical generalization of the concept for the case
of multichanne! exchangers.
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APPENDIX

In refs. {1, 2] the differential model of multichannel par-
allel-flow heat exchangers was given as

de
P Af (A1)
where

0= (01902’~--99n)

_ L= tmlL
' Lmax — min

(tmn and 1., are the temperatures of a cold and hot medium,
respectively, at the inlet to the exchanger).
The matrix A is given by

A=[g]i=W'U

where W is a diagonal matrix
W= {W,W,...

U = [uw,l1.

Obviously, if equation (A1) is satisfied by the vector 8, it
is also satisfied by

SW/'I}

t={(t,15....1) (A2)

that is
de _
dz
The elements of the vector t are the temperatures of the
media flowing within the channels of the exchanger. We

would like, however, to find an equation satisfied by the
following vector :

At. (A3)

8, =(6p15---16,4) (A4)



Multichannel parallel-flow heat exchangers 781

where
(Ada)

Let M, be an elementary matrix, which upon a pre-
multiplication of any matrix (vector) moves its pth row into
the position of the last row, and then adds it to the remaining
rows taken with the opposite signs. It is convenient to write
this matrix in block form:

j=L2,...,n;j#p.

S =1,— 1,

[ T
~L_,|:| o
1
M, = 1 (AS)
0 | -L,
1
[0...0l1)0...0]
_ -
—Ipﬂ 0
1
M= 135 "0 0.0 (A6)
1
0o |1,
L 1]
Then
Mot = (Sp15 10 t:Bppi 15 s Opnn b)) = ‘:—::l (A7)

Both sides of equation (A3) should be subjected to elemen-
tary transformations using M, :

Hence

ds,

=P (A12)
(the second of the above equations is identical with the pth
equation of (A3)).

Let J be a canonical Jordan form of A, while S is a matrix
which transforms A into this form. Then

M,AM, ' = M,SIS™'M, ' = (M,S)J(M,S) . (A13)
It may be shown that

M,S = (A14)

M,S)"' = (Al5)

where S, is an easy to calculate, non-singular square matrix,
while w, and v, are the row matrices whose elements are
immaterial for further analysis.

On performing the operations indicated by equation
(A13), employing (Al4) and (Al5) and comparing with
(A10) we obtain

P=S,J,.S;’ (A16)

where J,_ | is a diagonal matrix and also a canonical Jordan
form of P

ooy ={AAg e} (AL7)
Consequently, the solution of equation (A12) is straight-

d(M,t) _ forward.
sz = (M,AM, 1)(M,,t). (A8)
Let
F (a, "‘ap.l)(al,z_ap,z) (al‘p—l_ap.p—l)(al‘p+l—ap‘p+l) B (al,n_ap.n) )
(@21 — p.l)(az.z" p,Z) (aZp—l_ap,p—l)(aZ,p+l_ap,p+l) (@, — p,n)
| e A0
P (S _ap.l)(apAl,Z_ap,Z) (apA lp—1"Gpp— 1)(%- Lo+1 " Gppy 1) (ap— I.Il—ap.n) (A9)
(ap+1.l —ap‘l)(ap+ 1.2_ap.2) (ap+1‘pAI - p.p—l)(ap+l,p+l - p,p+l) (ap+l,n—ap,n)
(an.l - p.l)(an.z —ap,Z) (an,y— 1 _app— l)(an,p+ | = 8pp+ l) (R (an.n #_ap,n) J
(the matrix P is of order n—1), then the matrix M,AM, ! may be expressed in block form as
0
) P
M,AM, ' = (A10)
— &, —ap,Z""y —ap,p—I’ —ppi1s >~ ppn 0
0
a1 (_ [ﬂ] (AlD)
dz| ¢, t,
=1y =y sy T8pp 1y —Qppiiseaes ~p, ‘O
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FORCE MOTRICE MOYENNE DANS DES ECHANGEURS DE CHALEUR A
ECOULEMENTS PARALLELES MULTICANAUX

Résumé—On appelle echangeurs de type linéaire, des échangeurs multicanaux a écoulements paraliéles qui

sont modélisés en supposant que les coefficients globaux de transfert thermique et les flux de capacités

thermiques sont indépendants de la température. La force motrice moyenne définie pour ces échangeurs

a, en notation matricielle, une forme analogue a celle pour les échangeurs 4 deux canaux. On montre

que pour des valeurs constantes des coefficients elle est I'analogue de la moyenne logarithmique des
tempeératures.

MITTLERE TREIBENDE KRAFT IN MEHRKANAL-WARMEUBERTRAGERN MIT
PARALLELER STROMUNG

Zusammenfassung—Mehrkanal-Wirmeiibertrager mit paralleler Stréomung werden als “Wirmeiibertrager
von linearem Typ” bezeichnet, wenn bei ihrer Modellierung angenommen wird, daB} die Gesamt-
wirmedurchgangs-Koeffizienten und die Warmekapazitétsstrome temperaturunabhéngig sind. Die mittlere
treibende Kraft, die man fiir solche Wiarmetbertrager definiert, hat in Matrixschreibweise eine Form, die
derjenigen fiir Zweikanal-Ubertrager analog ist. Es kann gezeigt werden, daB fiir konstante Werte der
Koeffizienten eine Entsprechung der mittleren logarithmischen Temperaturdifferenz entsteht.

CPEJHEE 3HAYEHHWE JBWXYILEI CWIbl B MHOT'OKAHAJILHBIX MPIMOTOUYHBIX
TEMNNTOOBMEHHHUKAX

AnBoTanes—MHOrokaHa/IbHBIE NPAMOTOYHHE TEINIOOOMEHHHKH B NPEANOJIONKEHRH, 4TO Koa(du-

LMEHTH! CYMMAapHOTO TCILUIONEPEHOCa ¥ TEIUIOBbIC MOTOKH HE 3aBHCAT OT TEMNEPaTypHi, KIacCHGULA-

pyIOTCA Kak TeMmAoOOMEHHHKH JHHe#Horo Tuna. MaTpuyHas 3aMCh CPeAHEro 3HAYECHMA ABHXYIUEH

CHJIBI pacCMaTPHBAEMBIX TEIUIOOOMEHHHKOB CXOOHA MO GOpMe CO CIy4aeM IBYXKAHAJLHEIX TEIU1006-

MeHHEKOB. T10Ka3aHO, ¥TO NpH MOCTOAHHBIX K03(dHIHEHTaX ITO 3HAYEHHE CTAHOBATCSA aHAJIOTOM JIOTa-
pudMATecKol cpeaHel pa3HOCTH TEMIIEPATYP.



